
Circle

Area = πr^2

Circumference = $2\pi r$ Circumference = πd

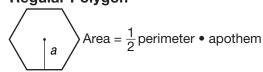
Cylinder

Volume = $\pi r^2 h$

Surface Area = $2\pi r^2 + 2\pi rh$

Sphere

Volume = $\frac{4}{3}\pi r^3$ Surface Area = $4\pi r^2$


Sector of Circle

Arc Length = $\frac{\text{circumference} \times \text{central angle}}{360^{\circ}}$

Sector Area = $\frac{\text{total area} \times \text{central angle}}{360^{\circ}}$

Regular Polygon

Formulas

DISTANCE BETWEEN TWO POINTS:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

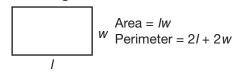
MID-POINT BETWEEN TWO POINTS:

 $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

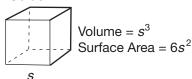
SLOPE:

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

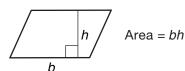
SLOPE-INTERCEPT FORM:

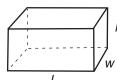

y = mx + b

POINT-SLOPE FORM:


 $y - y_1 = m \left(x - x_1 \right)$

Geometry **Applied Math II Reference Sheet**


Rectangle

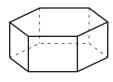

Cube

Parallelogram

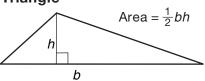
Rectangular Prism

Volume = *lwh*

Surface Area = 2wl + 2lh + 2wh


Right Pyramid

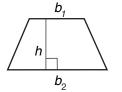
Volume = $\frac{1}{3}$ × base area × h


Surface Area = base area + face areas

Right Prism

Volume = base area $\times h$ Surface Area = base areas + face areas

Triangle

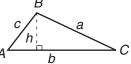


Pythagorean Theorem

 $b \qquad a^2 + b^2 = c^2$

Trapezoid

Area = $\frac{1}{2}h(b_1 + b_2)$


Trigonometry Formulas

 $\sin \theta = \frac{\text{side opposite}}{\text{hypotenuse}}$

 $\cos \theta = \frac{\text{side adjacent}}{\text{hypotenuse}}$

 $\tan \theta = \frac{\text{side opposite}}{}$ side adiacent

Law of sines: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Law of cosines: $b^2 = a^2 + c^2 - 2ac(\cos B)$

Cone

Volume = $\frac{1}{3}\pi r^2 h$

Surface Area = $\pi r^2 + \pi rs$